If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+36x-12=0
a = 6; b = 36; c = -12;
Δ = b2-4ac
Δ = 362-4·6·(-12)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-12\sqrt{11}}{2*6}=\frac{-36-12\sqrt{11}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+12\sqrt{11}}{2*6}=\frac{-36+12\sqrt{11}}{12} $
| X^2-480x-2400=0 | | 20n^2-88n+12=0 | | 2^(2x+1)+5^(2x+2)=1250 | | 16k*2-48k+17=0 | | h-6h=49 | | 9^2x+1=81^7x-2/3x | | 2x(x^2-147)=0 | | 5(3+1/x)=65 | | 3(1/3+x)+5x+4-2x=17 | | 7(2x+3)+8x-3(x+2)=10 | | 4x+2x-x=70 | | 4(x+2)-2(2x+3)=22 | | 1500=80x-0.5x^2-(40x+300) | | 600=80x-0.5x^2-(40x+300) | | 24b+12=14 | | 5t2+98t-490=0 | | 76=(x+72)/2 | | 0.75=0.83(0.75)+x(0.30) | | 0.75=0.79(0.75)+x(0.25) | | (126)n=18 | | 17(21-x)=16(x-21)+33 | | 3-x-2=17 | | a-7=7-a | | 52-i=31 | | n+57=91 | | 12p=220 | | 6x=2.24 | | 6x=3.75 | | 2(4x-4.2)=2x-8.4 | | 3(x-4)=3x+14 | | 1+2=e | | 6z=14z+56 |